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Abstract. The methodology of formulating spatio-temporal diffusion-migration equations in an
applied electric field for two competing diffusion processes is outlined using kinetic Ising model
versions with the help of spin–exchange dynamics due to Kawasaki. The two transport processes
considered here correspond to bounded displacement of species attached to supramolecular
structures and electron hopping between spatially separated electron transfer active centres.
The dependence of the diffusion coefficient on number density as well as the microscopic basis
underlying phenomenological diffusion-migration equations are pointed out.

1. Introduction

The description of spin-type Ising models involving different microscopic dynamical laws
has proved valuable in diverse fields. The formalism ofspin–flip between neighbouring
spins originally introduced by Glauber [1] for studying time dependence of spin–spin
correlation functions in magnetic systems has been subsequently demonstrated in the analysis
of adsorption–desorption kinetics [2], critical dynamics in Ising chains [3] etc. Furthermore,
the ingenuity of handling interactions between spins with the help of time-dependentspin–
exchangeprocesses for the calculation of transport properties, especially near the Curie point
was advocated by Kawasaki [4]. In the context of the kinetic Ising model (KIM), the above
spin–flip and spin–exchange processes are familiarly referred to as Glauber and Kawasaki
rates, respectively. During the past few decades, the scope and applicability of Kawasaki
dynamics has been further explored for studying diverse issues such as segregation in
binary mixtures [5], polymer chain kinetics [6], phase transitions [7], percolation problems
[8] etc. Among the advantages that KIM formalism offers we should mention the ease
with which macroscopic phenomena can be understood in terms of microscopic transition
probabilities [9]. This aspect is especially crucial in the analysis of statistical mechanics
of interacting systems where microscopic details alone provide a clue to phenomenological
observations. Furthermore, the exact mapping of such spin-type microscopic modelling into
phenomenological coarse-grained versions as well as the powerful insights the fine-grained
descriptions offer, are often not transparent.

The modelling of transport phenomena using KIM formalism has been studied from
various perspectives. For instance, analysing the behaviour of the self-diffusion constant
near the critical temperature constituted the first application of Kawasaki dynamics. The
description of transport phenomena in the presence of a bias electric field using microscopic
approaches has been extensively studied with objectives such as (i) onset of the non-diffusive
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regime, (ii) dependence of the critical exponent on a bias electric field and, (iii) percolation
behaviour, etc (cf [10–12]). However, the analysis based on the generalized master equation
(GME) and the formulation of Kawasaki rates in the case of competing diffusion processes
so as to decipher the origin of phenomenological equations has not yet been investigated.
The starting point in this context usually consists in formulating an Ising model whose time-
dependent behaviour is followed using the GME and expressing the transition probabilities
in terms of the spin variables and appropriate frequencies.

The methodology proposed herein is especially pertinent to the study of charge transport
through supramolecular systems [13] containing redox moieties, with potential applications
to sensors [14], electrocatalysis [15], molecular electronics [16] and immobilization of
enzymes onto electrode surfaces [17] etc. The charge propagation through macromolecular
structures containing redox molecules occurs via (i) ‘bounded’ physical displacement of
species and (ii) electron self-exchange from a reduced molecule to an oxidized one. In
solutions, charge transport is usually dominated by the physical displacement of the redox
molecules, whereas in the above-mentioned cases, redox moieties are bonded covalently,
coordinatively or electrostatically with the macromolecular assembly, thereby movement of
these particles in the lattice field is confined to a limited region in space (dictated by the
polymer backbone). In addition to this bounded displacement, charge transfer also occurs by
electron self-exchange, frequently referred as electron hopping between (nearest-neighbour)
redox species which is also aided by an applied electrical potential.

In this paper, we propose a formalism for analysing the above competing diffusion
processes in a bias electric field, namely diffusion of redox species via a vacancy mechanism
and through electron hopping processes. We indicate the derivation of the spatio-temporal
diffusion-migration equation using the KIM approach and demonstrate how this can be
viewed as a generalization of either the classical Nernst–Planck equation for physical
diffusion of charged species or of transport equations representing electron hopping between
spatially separated redox centres. Apart from pointing out the dependence of the diffusion
coefficient on the number density, we also demonstrate the significance of this methodology.
We restrict ourselves to one-dimensional lattice system for brevity; however, we believe that
the study will also be instrumental in extending such investigations to higher dimensions.

2. Model and analysis

The system we propose to investigate, consists of particles A, B and vacant sites randomly
distributed. The charges of A and B arezA andzB respectively. At a given instant of time,
A acts as a ‘donor’ of electrons while B as an ‘acceptor’ and hence B is considered to be
the lattice point for electron hopping.n (= zA − zB) represents the number of electrons
involved in the hopping process. It is assumed that no interactions between particles and
between particles and vacancies exist and multiple occupancy of a particular site by particles
is prohibited. The system consisting of anω lattice is the lattice populated by particles and
vacant sites while an� sublattice is populated by particles A and B. A schematic sketch of
the lattice under consideration is provided in figure 1(a).

The basic stochastic step involved in anω lattice is ‘bounded’ displacement in which A
and B can hop to empty sites under the influence of concentration and potential gradients
(figure 1(b)). Here, bounded displacement implies that the physical movement of these
particles becomes restricted and occurs between a few lattice sites in space. In addition to
the motion of these particles in the lattice spaceω, there exists an ‘apparent’ motion by
the electron self-exchange mechanism between particles A and B. When an electron hop
occurs from particle A at sitej to the neighbouring particle B at sitei, particles A and B
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Figure 1. (a) A schematic sketch ofω-lattice and�-sublattice indicating state space partitioning
(for ease of understanding the two-dimensional case is depicted). (b) Physical diffusion through
the vacancy mechanism. (c) Electron hopping between nearest-neighbour sites.

become interchanged (figure 1(c)). Since A and B are interconverted on account of electron
transfer, the movement of both species needs to be considered. Thus the sublattice for
electron hopping is�.

While electron hopping occurs between A and B, counterions move accordingly in order
to maintain electroneutrality in the system. We assume that the movement of counterions
in the lattice is rapid in comparison with the physical motion and electron hopping. To
focus our attention, we may consider A and B to be Os2+ and Os3+, respectively, in
the polymer poly[Os(bpy)2(vpy)2]3+/2+ with a corresponding amount of CIO−4 counterions
(Os = Osmium; bpy= bipyridine; vpy= vinylpyridine). This polymer is coated onto
the electrodes and the driving force for the transport is the applied electric potential which
is felt over the entire interfacial region. Here, in view of the explicit dependences of the
electric potential it is appropriate to call it a ‘biased diffusion’ problem.

Particle A attempts to move in the electric field at randomly selected locationj (i)

with rate kP
ji(k

P
ij ) and is successful only if the nearest-neighbour sitei(j) is vacant. This

elementary event i.e. the jump from thej th lattice point toi covers a distance of1x.
And correspondingly when an electron hop occurs from particle A at sitej (i) to the
neighbouring particle B at sitei(j) the rate constant involved iskE

ij (k
E
ij ). The average
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distance covered during this processδ is the centre-to-centre distance of closest approach
between two adjacent particles; thusδ is comparable to or slightly greater than the molecular
diameter.

2.1. Generalized master equation description

The time dependence of this model is described in terms of a master equation which
governs the time evolution of the probability distribution. Denoting the normalizedN

spin distribution function at timet by PN({σ }N ; t) the GME can be written as

d

dt
PN({σ }N ; t) =

∑
〈ij〉

Wij (σiσj {σ }ij )PN({σ }ijN −
∑
〈ij〉

Wij (σjσi{σ }ij )PN({σ }N)

+
∑
〈jk〉

Wjk(σkσj {σ }jk)PN({σ }jkN )−
∑
〈jk〉

Wjk(σjσk{σ }jk)PN({σ }N) (1)

wherei and k are the site indices of the nearest neighbours ofj , {σ }ijN and {σ }jkN are the
spin configurations in whichσj , σi and σjσk are interchanged with respect to{σ }N . 〈ij〉
and 〈jk〉 implies the pair of nearest-neighbour spins. The notations are as in [2]. Through
a single elementary step the configuration{σ }ijN or {σ }jkN can evolve to{σ }N only if {σ }ijN
or {σ }jkN differ from {σ }N at most by the state oftwo nearest-neighbour spinsat locationsi
andj or j andk. The transition probabilities of the individual spins are dependent on the
transient values of the neighbouring spins as well as on the influence of the bias electric
field.

σω andσ� represent the spin variables for theω lattice and� sublattice respectively.
In this analysis, we consider a two-state Ising model where the spin variableσω can have a
value of either+1 or−1 in theω lattice depending on whether that site is occupied (by A
or B) or vacant. Similarly for the� sublatticeσ� can take two possible values+χ and−χ
depending on whether the site has particle A or B. Thus in the main latticeω, we do not
distinguish whether a site is occupied by A or B; rather, we differentiate between occupancy
and vacancy of a given site, whereas in the� sublattice, this difference is explicitly taken
into account. Thus, a complete description of a given site requires specification of the value
of the spin variableas well asthe lattice type (ω or �).

On the basis of this definition, we introduce the macroscopic variablesχA, χB andχV,
which represent the fraction of the sites occupied by A(= NA/N),B(= NB/N), and vacant
sites respectively, whereNA andNB are the number of particles of A and B present andN

is the total number of lattice sites. In latticeω,

State of occupancy σω χT χV

Occupied +1 1 0
Vacant −1 0 1

Thus we can write

χT =
(

1+ 〈σω〉
2

)
(2)

whereχT = 〈χ〉 = χA + χB andχV + χT = 1. In the sublattice�

State of occupancy σ� χA χB

Occupied by A +χ χ 0
Occupied by B −χ 0 χ
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In general

χA =
( 〈χ〉 + 〈σ�〉

2

)
(3)

and analogously forχB and χV. For further analysis, we need the first moment〈σj 〉 of
the probability distributionPN({σ }N ; t) which can easily be obtained from equation (1) as
(cf [1])

d〈σj 〉
dt
= −2

∑
〈ij〉εj
〈σjWij (σjσi{σ }ij )〉 − 2

∑
〈jk〉εj
〈σjWjk(σjσk{σ }jk)〉 (4)

where,〈σj 〉 =
∑
j σjPN({σ }N ; t) is obviously the expectation value ofσj , 〈ij〉εj and〈jk〉εj

implies that the sum is over those bonds〈ij〉 and〈jk〉 which involvej as the terminal site.

2.2. Choice of transition probabilities

The energy required for the particle and electron hop in the latticeω and sublattice�
respectively, can be expressed using the Ising Hamiltonian [18]. Assuming no interaction
between the particles, the Hamiltonian at sitej can be formulated as

Hωj = −
∑
j

hωj

(
1+ σωj

2

)
(5)

H�j = −
∑
j

h�j

(
χ + σ�j

2χ

)
(6)

where h�j = neφj and hωj = zj eφj , apart from an additive constant,φj is the electric
potential atj , n being the number of electrons involved in the hopping, whilezj e indicates
the charge of the diffusing species at sitej . These Hamiltonians are constructed in such a
way that when a particle or electron resides on a sitej the Hamiltonian exists, otherwise
it vanishes. For example, when a particle is at sitej in theω lattice, the spin variableσωj
takes a value of+1 and hence the Hamiltonian exists or elseσωj becomes−1 andHωj will
vanish. Similarly for the non-vanishing of the Hamiltonian at the� sublattice,σ�j should
be+χ .

Though equations (5) and (6) pertain to a non-interacting system, interactions can be
effortlessly incorporated at the mean-field level so as to give the familiar nearest-neighbour
Ising Hamiltonian [18]. Applying the condition of detailed balancing to the master equation
we obtain

Wij (σjσi{σ }ij )P eN({σ }N ; t) = Wij (σiσj {σ }ij )P eN({σ }ijN ; t) (7)

Wjk(σkσj {σ }jk)P eN({σ }jkN ; t) = Wjk(σjσk{σ }jk)P eN({σ }N ; t). (8)

At equilibrium, the probability that the spin configurations{σ }ijN and {σ }jkN will
interchange their configurations with respect to{σ }N is proportional to the Maxwell–
Boltzmann factor exp(−H/kBT ) namely,

P eN({σ }ijN ; t)
P eN({σ }N ; t)

= exp

(−Hij
kBT

)
whereHij = Hj −Hi . In general,P eN is given by

P eN =
exp(−Hij /kBT )

Z
(9)
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whereZ represents the partition function.
It is necessary at this stage to decipher the nature of physical displacement and electron

hopping and some subtle differences that exist between the two. First, at latticeω, the
probability of physical displacement increases with the ‘blocking factor’(1−σω)/2, which
means that as the probability of a site adjacent to the particle under consideration being
empty increases, the probability of diffusion by the vacancy mechanism also increases.
Similarly the rate of electron hopping increases if the probability of B occupying a site
adjacent to A increases. Second, as discussed earlier, the physical motion of the molecules
at the ω lattice is not free in that the redox molecules are bound to the underlying
supramolecular structure. Due to this inherent restriction, the tendency of the particle to
back track to the site just vacated by it is enhanced. Moreover, if a particle has just moved
from site j to site i, site j is more likely to be unoccupied than any other site adjacent
to i. Therefore, an attempt to return to sitej is more likely to be successful because the
field is not strong enough to restrict the backward motion as compared to the attempted
movement to other sites (cf [19, 20]). Thus the transition probability predicted in terms
of spin variables and rate constants will be more than the observed transition rate. Hence
a correlation factorf is needed to account for the retarded motion of the particle under
consideration. We consider the correlation factor effect to be significant for the vacancy
diffusion mechanism, although for a more accurate description the detailed dependence of
the correlation factor on both processes needs to be investigated.

As mentioned earlier, the transition probabilities in equation (1) are dependent on the
neighbouring spin values and on the electric field. These can be constructed from the spin
variables and field-dependent particle jump frequencieskP

ij , k
P
ji , k

P
kj andkP

jk and the electron
hopping frequencieskE

ij , k
E
ji , k

E
kj and kE

jk using the condition of detailed balancing. Taking
into account the above factors, the transition probabilities satisfying detailed balancing are
as follows:

WE
ij (σiσj {σ }ij ) = kE

ji

(
χ − σ�i

2χ

)(
χ + σ�j

2χ

)
+ kE

ij

(
χ − σ�j

2χ

)(
χ + σ�i

2χ

)
(10)

WE
jk(σjσk{σ }jk) = kE

kj

(
χ − σ�j

2χ

)(
χ + σ�k

2χ

)
+ kE

jk

(
χ − σ�k

2χ

)(
χ + σ�j

2χ

)
(11)

WP
ij (σiσj {σ }ij ) = kP

ij

(
1− σωj

2

)(
χ + σωi

2χ

)
+ kP

jif

(
1− σωi

2

)(
χ + σωj

2χ

)
(12)

WP
jk(σjσk{σ }jk) = kP

jkf

(
1− σωk

2

)(
χ + σωj

2χ

)
+ kP

kjf

(
1− σωj

2

)(
χ + σωk

2χ

)
. (13)

These are written in a manner analogous to the Ising Hamiltonian (6) whereby a particle
or electron jumps fromi to j or j to i depending on the value of the spin variablesσi and
σj in the appropriate lattice. For electron hopping to take place from sitei to j in the�
sublattice, A has to be present in sitei and B at sitej , i.e. σ�i = +χ andσ�j = −χ then
WE
ij (σiσj {σ }ij ) = kE

ij . Similarly for the transfer of an electron from sitej to i, σ�i = −χ
andσ�j = +χ and henceWE

ij (σiσj {σ }ij ) = kE
ji . For particle A to hop fromi to j , a vacant

site should be present at sitej , σωj = −1 andσ�i = +χ thenWP
ij (σiσj {σ }ij ) = kP

ij f . When
both the electron hop and particle displacement are operative, equations (7) and (8) still
hold for the detailed balance, with [21]

Wij (σiσj {σ }ij ) = WE
ij (σiσj {σ }ij )+WP

ij (σiσj {σ }ij ). (14)

The choice of the transition probabilityWij in (10)–(13) is not entirely unique, and the
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condition of detailed balancing essentially puts a minimal constraint on the general form of
Wij whereby rejection of a large number of functional forms forWij is made possible.

2.3. Phenomenological diffusion-migration equations

By imposing the condition of detailed balancing forWE
ij andWE

jk, we can write the ratio of
electron jump frequencies using equations (7)–(13)

kE
ji

kE
ij

= exp[ne(φi − φj )/kBT ] (15)

kE
kj

kE
jk

= exp[ne(φj − φk)/kBT ] (16)

and analogously for physical displacement frequencies. This suggests

kE
ij = kE

0 exp(−ξE1 /kBT ) (17)

kE
ji = kE

0 exp(−ξE2 /kBT ). (18)

In order for equations (17) and (18) to satisfy equation (15) we further demand that

ξE
2 − ξE

1 = ne(φj − φi). (19)

Equation (19) implies the following form forξE
1 andξE

2 :

ξE
1 = ξE

0 − α′ne(φj − φi) (20)

ξE
2 = ξE

0 + αne(φj − φi) (21)

andα + α′ = 1. Even in the absence of applied electrical potential the spin–exchange is
possible due toξE

0 which is constant independent of potential but may depend upon polymer
morphology, solvent effects, etc. The segmental motion of the polymer chains aided by the
solvent dynamical effects are implicitly incorporated throughξE

0 . Now the exchange rate
constant becomes

kE
ji = kE exp[−αne(φj − φi)/kBT ] (22)

kE
ij = kE exp[α′ne(φj − φi)/kBT ]. (23)

Similarly from equation (16) we obtain

kE
kj = kE exp[αne(φj − φk)/kBT ] (24)

kE
jk = kE exp[−α′ne(φj − φk)/kBT ] (25)

where

kE = kE
0 exp(−ξE

0 /kBT ). (26)

It is easy to recall that equations (22)–(25) represent the potential dependence of electron
hopping frequencies [22]. Analogously, we can write for the physical displacement process,
equations similar to (22)–(25).

Using the above expressions for electron transfer and particle movement rates and
substituting in the transition probability occurring in the GME (4) and invoking the definition
of 〈σω〉 and 〈σ�〉, we derive a difference-differential equation. Converting it to the
corresponding differential equation, we obtain the transport equation forCA which is the
fraction of sites occupied by A out of the total number of occupied sites(= χA/χT), namely

∂CA

∂t
= Dap

{
∂2CA

∂x2
+ e

DapkBT

∂

∂x

[
CA(D

nz
ap− nDEχTCA)

∂φ

∂x

]}
(27)
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whereDap refers to the apparent diffusion coefficient,

Dap= DPhysf (1− χT)+DEχT (28)

and

Dnz
ap = zADap+ (n− zA)DEχT. (29)

DE andDP follows as

DE = kE
0δ

2 exp(−ξE
0 /kBT ) (30)

DPhys= kP
01x

2 exp(−ξP
0 /kBT ). (31)

It is pertinent to note here that diverse dependences of mean-square displacement on
time have been explicitly reported in the literature (cf diffusion-to-drift crossover). In
competing diffusion processes such as the one analysed here, non-diffusive movement as
well as percolation effects also need to be considered. However, since our objective in this
investigation has been to unravel the microscopic origins of macroscopic transport equations
the above improvisations have been ignored.

3. Perspectives

Equations (27)–(29) constitute the central results of the analysis. In hindsight, the
structure of equation (28) is not entirely unanticipated, as the combined diffusion coefficient
essentially represents the individual effects due to physical displacement and electron
hopping taking account of the correlation factorf . As indicated earlier, the basis behind the
introduction off is to incorporate the correlated movement of the particle and it is customary
to invoke the dependence off on site occupancy in studies involving tracer diffusion [19].
The dependence of the diffusion coefficientDap on number density has been the topic of
current investigations [23] in the study of charge transport through supramolecular assembly.
For example, since the correlation factorf is a function of site occupancy, equation (28)
predicts nonlinear variation ofDap with respect to fractional occupancyχT in accordance
with the Monte Carlo simulation of restricted diffusion (cf [24]). Further, juxtaposition of
n andzA occurring in equation (29) forDnz

ap is quite non-trivial. Ifn = zA = 1,Dnz
ap = Dap

and equation (16) of [24] follows from (28).
As χT → 1 (which implies the absence of vacancies), physical diffusion cannot occur

andDap is governed only by the electron hopping diffusion coefficientDE given by (30).
Analogously whenχT → 0, electron hopping is negligible, because of the increased spatial
separation between the redox moieties. Under this condition, equation (31) implies that the
physical motion of the redox molecules is governed essentially by three parameters namely
ξP

0 , kP
0 and1x2. ξP

0 may be considered as arising from the conformational behaviour of the
polymer†. The parameterkP

0 characterizes the jump frequency while the spatial restriction
of a redox molecule away from its equilibrium position is taken into account through1x.

The interesting solvent dependence ofDE (andDPhys) arising from equations (30) and
(31) should be noted. In particular, a major component ofξE

0 is the solvent reorganization
energy of Marcus, pertaining to electron transfer reactions [25] and has entered naturally

† Even though equation (27) has been derived assuming a one-dimensional lattice its extension to three-dimensional
systems is straightforward. Since the electrode potential varies in one direction in chemically modified electrodes
the expected alteration as far as higher dimensions is concerned will essentially be in concentration gradient terms.
Thus we anticipate that terms such asξP

0 , will still exist in three-dimensional systems. The retarded motion
arising from detailed structural changes in polymer morphology will require extensive study and is at present not
considered.
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from the structure of charge transfer rate constantvis à vis transition probabilities and could
not have been foreseen except on empirical considerations. Furthermore1x2 and δ2 of
equations (30) and (31), respectively, may be modelled† as a function of number density
for point molecules [26] even ifkE

0 andkP
0 are constants for a given system and thus various

types of concentration dependence ofDE andDPhys critically analysed. In the analysis
of charge transport through supramolecular structures nonlinear variation of the diffusion
coefficient with number density involving percolation effects are noticed. This aspect is
also amenable for investigations within this framework.

Even more interesting is the time-dependent diffusion-migration equation (27) when
two different dynamical processes, namely conventional ‘bounded’ diffusion and electron
hopping between redox centres, occur. WhenχT → 0, the second term of equation (27)
vanishes and the classical Nernst–Planck equation [27], namely

∂CA

∂t
= DPhys

{
∂2CA

∂x2
+ zAe

kBT

∂

∂x

[
CA
∂φ

∂x

]}
(32)

is obtained‡ andDPhys= kP
01x

2 exp(−ξP
0 /kBT ) sincef = 1. Analogously, whenχT → 1,

there are no vacant sites (whereby the physical diffusion is absent) and hence equation (27)
becomes

∂CA

∂t
= DE

{
∂2CA

∂x2
+ ne

kBT

∂

∂x

[
CA(1− CA)

∂φ

∂x

]}
(33)

whereDE = kE
0δ

2 exp(−ξE
0 /kBT ). Equation (33) was first derived by Savéant [28] and its

generalization to include interaction between particles has also been discussed [18]. Thus,
equation (27) can be considered either as a generalization of the classical Nernst–Planck
equation for diffusion of charged particles or of the transport equation for electron hopping
between nearest-neighbour redox centres§.

The methodology of deriving the combined diffusion coefficientDap for two competing
transport phenomena, namely physical displacement and electron hopping, in itself can be
accomplished by other approaches, such as the use of random walks [24], random flights
[26], lattice gas models [29], etc. However, the chief merit of the KIM approach expounded
here consists in thesimultaneousdetermination of the diffusion-migration equation and the
corresponding diffusion coefficient. For example, the availability of equation (28) by other
procedures does not lead to the structure of the diffusion-migration equationper se. The
latter aspect is especially important in experimental evaluation of the current by transient
electrochemical techniques. However, solving equation (27) either analytically or by using
numerical techniques is a profound exercise because of the spatially varying electric field.
It should be mentioned here that even the solution of Nernst–Planck equation ((32) above)
pertaining to diffusion of ions in membranes, is a non-trivial exercise (cf [30]).

For electric field drivenfluctuating systems a transport equation of the form (27) does
not suffice, because diffusion becomes anomalous. This issue becomes crucial especially if
our objective is to analyse the dynamical behaviour of〈x2(t)〉 visà visDap. A vast amount of
literature exists on this aspect (cf [31]). Our emphasis, however, is to indicate how the GME
equation coupled with Ising Hamiltonian leads to a hierarchy of phenomenological transport
equations which can be subsequently employed to analyse the ‘output’ of electrochemical

† By considering the transition probabilitiesWij to be random, it is possible to introduce〈δ2〉 and〈1x2〉, mean-
square estimates of the hopping distance and physical displacement, respectively. We ignore this aspect here.
‡ Recall that a Kramers–Moyal expansion of the continuum version of GME leads to the Fokker–Planck equation
containing the potential energy of the system instead of the applied electric field.
§ If we ignore the spatial variation of the electric potentialφ, equation (32) is isomorphic with Burgers’ equation.
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experiments. We reiterate here that other conventional global approaches based on chemical
kinetic schemes, irreversible thermodynamics, electrolyte solution theory, etc are not
directly amenable to model electron hopping and particle diffusion processes occurring
simultaneously in an electric field. Hence the present methodology using KIM versions
is especially attractive in so far as the mapping of phenomenological descriptions using
microscopic basis is concerned.

It is interesting to enquire whether the above formalism can be studied using the
spin 1 Ising model version with{σ } values +1, −1 and 0 for A, B and vacancy.
However, the formulation of transition probabilities and the subsequent substitution in
the reduced GME becomes tedious. Nevertheless, the final algebraic structure of the
diffusion-migration equation is not expected to alter since the physical description remains
the same. Furthermore, one may ask whether the GME itself can be subjected to further
analysis obviating the need to derive phenomenological transport equations. There exist
two possibilities: the first is the evaluation of the mean-square displacement by Monte
Carlo simulation (cf [32]) which leads to a microscopic dependence of the diffusion
coefficient on system parameters. The second option consists in recognizing the nature of
the hopping particle as an electron and thereby resorting to methodologies such as effective
medium approximations [37] to evaluate the current in the time domain. Furthermore, the
incorporation of distance-dependent electron transfer rates using the continuum version of
equation (1)vis á vis transition probabilities, is feasible and will be discussed elsewhere.

Appendix A

In formulating the spatio-temporal diffusion-migration equation using KIM it is essential
to decipher whether the electron hopping or particle motion takes place at adjacent sites
i and j . Accordingly the transition probability has to incorporate necessary changes to
account for the spin exchange. It should be noted here, that at any given instant of time,
only one process, either electron hopping or physical motion, can take place between these
two sites. There are two methodologies using which the final diffusion-migration equation
can be arrived at. Firstly the spin exchange due to electron and particle hopping can be
incorporated at the GME itself whereby the master equation is expressed with eight terms,
four for electron hopping and four for physical ‘bounded’ displacement. Another method
is to incorporate, the transition probabilities in general at first, and then splitting into two
separate forms using the ‘addition’ property as used by Bellon and Martin in [21]. Both
these methods do not violate the condition of detailed balancing and do not alter the final
equation. In this paper we have resorted to the methodology of Bellon and Martin.

A few comments concerning the significance of the final equation (28) may be pointed
out here: the limiting behaviours and their origin. First, when the electron hopping is set
to zero i.e.χT → 0, the unoccupied adjacent site for hopping to occur will be far away.
In this case,Dap = DPhysf , wheref becomes a constant (sinceχT → 0) and hence the
diffusion coefficient becomes a constant as shown by Kutner [34] provided1x is constant.
Second, when the occupancy is below the percolation threshold, for electron hopping to
take place the molecules have to reach the ‘encounter distance’ i.e. the molecular separation
has to be less thanδ. However, for the case under consideration here, fractional occupancy
is less than percolation threshold, hence the probability for the molecules to come within
the encounter distance decreases. For this reason the time taken for electron hopping will
be high and henceDE is lowered. Thus the particle density is indirectly related toDE.
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Appendix B

In statistical models such as the one being analysed here, the notion of correlation factor
enters quite explicitly. For example, if an electroactive species has exchanged its position
with a vacant site, the probability of it returning to the vacant site is higher than the
probability of any other jump. This implies that some of the jumps prove to be ineffective;
hence the correlation factor is less than one. This intuitive picture has given rise to a whole
set of rules to determine the correlation factor as a function of number density and lattice
geometry in solid state physics [19].

The particle jump frequency that appears in equations (12) and (13) along with the
correlation factor is the total rate at which the particle hops to the adjacent site(kT

ij ), which
can be represented as,

kT
ij = kP

ij f (B1)

wherekP
ij is potential dependent and the correlation factorf is independent of potential.

Hence, by writing kP
ij and f instead of kT

ij we have essentially separated potential-
independent and -dependent terms. Now it should be noted that the total rate of particle
jumps in a redox polymeric systemis a function of both time and distance [23, 24]. The
time dependence can be represented by

kT
ij =

1

2τ
. (B2)

Let us consider the distance travelled by the particle aftern jumps which is

x =
n∑

m=1

xm (B3)

wherexm is the displacement of the particle in themth jump. The ensemble average of
〈x2〉 can be represented as

〈x2〉 =
n∑

m=1

〈x2
m〉 + 2

n−1∑
p=1

n−p∑
m=1

〈xm+pxm〉. (B4)

Thus to satisfy equations (B1) and (B2) the following forms were suggested forkP
ij andf ,

kP
ij =

∑n
m=1〈x2

m〉
2〈x2〉t (B5)

and

f = 〈x2〉∑n
m=1〈x2

m〉
(B6)

or using equation (B4),

f = 1+ 2
∑n−1

p=1

∑n−p
m=1〈xm+pxm〉∑n

m=1〈x2
m〉

. (B7)

Equation (B7) can also conveniently be written in its equivalent three-dimensional form
by considering the vector displacement of the particle in its jump. However, such a step is
unnecessary since the transport equation here is also derived only for the one-dimensional
case. If after any one jump of a particle, say A, all possible directions for its next jump



7682 R A Denny and M V Sangaranarayanan

were equally possible, then the factorf would be unity, because all the〈ym+pym〉 would
be zero. The extent to whichf departs from unity is a measure of the correlations between
successive jumps of the particle i.e.〈ym+pym〉. The dimensionless factor,f is therefore
known as the correlation factor and its value varies between 0 and 1. Correspondingly,kP

ij

would be the particle hopping rate constant if no account were taken of the occurrence of
these correlations.

In the competing diffusion process under consideration here, a similar argument holds
for electron exchange as well. A rigorous solution of the problem would then require either
formulating a system of equations and some sort of ‘closure’ assumptions or probability
distribution of transition rates, taking these correlations into account. Since this has not
been carried out here, the derivation of macroscopic transport equation from the microscopic
picture is in a sense ‘unsatisfactory’.
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